Swin-LBP: a competitive feature engineering model for urine sediment classification

Author:

Erten Mehmet,Barua Prabal DattaORCID,Tuncer Ilknur,Dogan Sengul,Baygin Mehmet,Tuncer Turker,Tan Ru-San,Acharya U. Rajendra

Abstract

AbstractAutomated urine sediment analysis has become an essential part of diagnosing, monitoring, and treating various diseases that affect the urinary tract and kidneys. However, manual analysis of urine sediment is time-consuming and prone to human bias, and hence there is a need for an automated urine sediment analysis systems using machine learning algorithms. In this work, we propose Swin-LBP, a handcrafted urine sediment classification model using the Swin transformer architecture and local binary pattern (LBP) technique to achieve high classification performance. The Swin-LBP model comprises five phases: preprocessing of input images using shifted windows-based patch division, six-layered LBP-based feature extraction, neighborhood component analysis-based feature selection, support vector machine-based calculation of six predicted vectors, and mode function-based majority voting of the six predicted vectors to generate four additional voted vectors. Our newly reconstructed urine sediment image dataset, consisting of 7 distinct classes, was utilized for training and testing our model. Our proposed model has several advantages over existing automated urinalysis systems. Firstly, we used a feature engineering model that enables high classification performance with linear complexity. This means that it can provide accurate results quickly and efficiently, making it an attractive alternative to time-consuming and biased manual urine sediment analysis. Additionally, our model outperformed existing deep learning models developed on the same source urine sediment image dataset, indicating its superiority in urine sediment classification. Our model achieved 92.60% accuracy for 7-class urine sediment classification, with an average precision of 92.05%. These results demonstrate that the proposed Swin-LBP model can provide a reliable and efficient solution for the diagnosis, surveillance, and therapeutic monitoring of various diseases affecting the kidneys and urinary tract. The proposed model's accuracy, speed, and efficiency make it an attractive option for clinical laboratories and healthcare facilities. In conclusion, the Swin-LBP model has the potential to revolutionize urine sediment analysis and improve patient outcomes in the diagnosis and treatment of urinary tract and kidney diseases.

Funder

University of Southern Queensland

Publisher

Springer Science and Business Media LLC

Subject

Artificial Intelligence,Software

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3