1. Wang, Y., Sun, Y., Liu, Z., Sarma, S.E., Bronstein, M.M., Solomon, J.M.: Dynamic graph CNN for learning on point clouds (2018). arXiv:1801.07829
2. Qi, C.R., Liu, W., Wu, C., Su, H., Guibas, L.J.: Frustum pointnets for 3d object detection from rgb-d data. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–22 June, pp. 918–927 (2018)
3. Qi, C.R., Su, H., Mo, K., Guibas, L.J.: Pointnet: deep learning on point sets for 3d classification and segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July, vol. 1, p. 4 (2017)
4. Qi, C.R., Yi, L., Su, H., Guibas, L.J.: Pointnet++: deep hierarchical feature learning on point sets in a metric space. In: Proceedings of the Advances in Neural Information Processing Systems, Long Beach, CA, USA, 4–9 December, pp. 5099–5108 (2017)
5. Xu, M., Zhang, J., Peng, Z., Xu, M., Qi, X., Qiao, Yu.: Learning Geometry-Disentangled Representation for Complementary Understanding of 3D Object Point Cloud (2020)