A Distributed Indoor Mapping Method Based on Control-Network-Aided SLAM: Scheme and Analysis

Author:

Tang Jian,Wen Jingren,Qian ChuangORCID

Abstract

Indoor mobile mapping techniques are important for indoor navigation and indoor modeling. As an efficient method, Simultaneous Localization and Mapping (SLAM) based on Light Detection and Ranging (LiDAR) has been applied for fast indoor mobile mapping. It can quickly construct high-precision indoor maps in a certain small region. However, with the expansion of the mapping area, SLAM-based mapping methods face many difficulties, such as loop closure detection, large amounts of calculation, large memory occupation, and limited mapping precision. In this paper, we propose a distributed indoor mapping scheme based on control-network-aided SLAM to solve the problem of mapping for large-scale environments. Its effectiveness is analyzed from the relative accuracy and absolute accuracy of the mapping results. The experimental results show that the relative accuracy can reach 0.08 m, an improvement of 49.8% compared to the mapping result without loop closure. The absolute accuracy can reach 0.13 m, which proves the method’s feasibility for distributed mapping. The accuracies under different numbers of control points are also compared to find the suitable structure of the control network.

Funder

National Key Research and Development Program

Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference35 articles.

1. Indoor map construction via mobile crowdsensing;Gao,2018

2. The National Human Activity Pattern Survey (NHAPS): a resource for assessing exposure to environmental pollutants

3. Google Indoor Maps Availability http://support.google.com/gmm/bin/answer.py?hl=en&answer=1685827

4. The Accuracy Comparison of Three Simultaneous Localization and Mapping (SLAM)-Based Indoor Mapping Technologies

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3