Convective Initiation Proxies for Nowcasting Precipitation Severity Using the MSG-SEVIRI Rapid Scan

Author:

Gallucci DonatelloORCID,De Natale Maria Pia,Cimini DomenicoORCID,Di Paola FrancescoORCID,Gentile SabrinaORCID,Geraldi EdoardoORCID,Larosa SalvatoreORCID,Nilo Saverio TeodosioORCID,Ricciardelli Elisabetta,Viggiano MariassuntaORCID,Romano FilomenaORCID

Abstract

In this study, we investigate the ability of several convective initiation predictors based on satellite infrared observations to distinguish convective weak precipitation events from those leading to intense rainfall. The two types of precipitation are identified according to hourly rainfall, respectively less than 10 mm and greater than 30 mm. The analysis is conducted on a representative dataset containing 92 severe and weak precipitation events collected over the Italian peninsula in the period 2016–2019 over June-September. The events are selected to be short-lived (i.e., less than 12 h) and localized (i.e., less than 50×50km2). Italian National Radar Network products, namely the Vertical Maximum Intensity (VMI) and the Surface Rain Total (SRT) variables (from Dewetra Platform by CIMA, Italian Civil Protection Department), are used as indicators of convection (i.e., VMI greater than 35 dBZ echo intensity) and cumulated rainfall, respectively. The considered predictors are linear combinations of spectral infrared channels measured with the Rapid Scan Service (RSS) Spinning Enhanced Visible and InfraRed Imager (SEVIRI) aboard Meteosat Second Generation (MSG) geostationary satellites. We select a 5×5 SEVIRI pixel-box centered on the storm core and perform a statistical analysis of the predictors up to 2.5 h around the event occurrence. We demonstrate that some of the proxies—describing growth and glaciation storm properties—show few degrees contrast between severe and nonsevere precipitation cases, hence carrying significant information to help discriminate the two types. We design a threshold scheme based on the three most informative predictors to distinguish weak and strong precipitation events. This analysis yields accuracy higher than 0.6 and the probability of false detection lower than 0.26; in terms of reducing false alarms, this method shows slight better performances compared to related works, at the expense of a lower probability of detection. The overall results, however, show limited capability for these infrared proxies as stand-alone predictors to distinguish severe from nonsevere precipitation events. Nonetheless, these may serve as additional tools to reduce the false alarm ratio in nowcasting algorithms for convective orographic storms. This study also provides further insight into the correlation between early infrared fields signatures prior to convection and subsequent evolution of the storms, extending previous works in this field.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3