Forecasting Convective Initiation by Monitoring the Evolution of Moving Cumulus in Daytime GOES Imagery

Author:

Mecikalski John R.1,Bedka Kristopher M.2

Affiliation:

1. Atmospheric Science Department, University of Alabama in Huntsville, Huntsville, Alabama

2. Cooperative Institute for Meteorological Satellite Studies, Space Science and Engineering Center, University of Wisconsin—Madison, Madison, Wisconsin

Abstract

Abstract This study identifies the precursor signals of convective initiation within sequences of 1-km-resolution visible (VIS) and 4–8-km infrared (IR) imagery from the Geostationary Operational Environmental Satellite (GOES) instrument. Convective initiation (CI) is defined for this study as the first detection of Weather Surveillance Radar-1988 Doppler (WSR-88D) reflectivities ≥35 dBZ produced by convective clouds. Results indicate that CI may be forecasted ∼30–45 min in advance through the monitoring of key IR fields for convective clouds. This is made possible by the coincident use of three components of GOES data: 1) a cumulus cloud “mask” at 1-km resolution using VIS and IR data, 2) satellite-derived atmospheric motion vectors (AMVs) for tracking individual cumulus clouds, and 3) IR brightness temperature (TB) and multispectral band-differencing time trends. In effect, these techniques isolate only the cumulus convection in satellite imagery, track moving cumulus convection, and evaluate various IR cloud properties in time. Convective initiation is predicted by accumulating information within a satellite pixel that is attributed to the first occurrence of a ≥35 dBZ radar echo. Through the incorporation of satellite tracking of moving cumulus clouds, this work represents a significant advance in the use of routinely available GOES data for monitoring aspects of cumulus clouds important for nowcasting CI (0–1-h forecasts). Once cumulus cloud tracking is established, eight predictor fields based on Lagrangian trends in IR data are used to characterize cloud conditions consistent with CI. Cumulus cloud pixels for which ≥7 of the 8 CI indicators are satisfied are labeled as having high CI potential, assuming an extrapolation of past trends into the future. Comparison to future WSR-88D imagery then measures the method's predictive skill. Convective initiation predictability is demonstrated using several convective events—one during IHOP_2002—that occur over a variety of synoptic and mesoscale forcing regimes.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 205 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3