A Satellite-Based Convective Cloud Object Tracking and Multipurpose Data Fusion Tool with Application to Developing Convection

Author:

Sieglaff Justin M.1,Hartung Daniel C.1,Feltz Wayne F.1,Cronce Lee M.1,Lakshmanan Valliappa2

Affiliation:

1. Cooperative Institute for Meteorological Satellite Studies, University of Wisconsin—Madison, Madison, Wisconsin

2. Cooperative Institute for Mesoscale Meteorological Studies, University of Oklahoma, and NOAA/National Severe Storms Laboratory, Norman, Oklahoma

Abstract

Abstract Studying deep convective clouds requires the use of available observation platforms with high temporal and spatial resolution, as well as other non–remote sensing meteorological data (i.e., numerical weather prediction model output, conventional observations, etc.). Such data are often at different temporal and spatial resolutions, and consequently, there exists the need to fuse these different meteorological datasets into a single framework. This paper introduces a methodology to identify and track convective cloud objects from convective cloud infancy [as few as three Geostationary Operational Environmental Satellite (GOES) infrared (IR) pixels] into the mature phase (hundreds of GOES IR pixels) using only geostationary imager IR window observations for the purpose of monitoring the initial growth of convective clouds. The object tracking system described within builds upon the Warning Decision Support System-Integrated Information (WDSS-II) object tracking capabilities. The system uses an IR-window-based field as input to WDSS-II for cloud object identification and tracking and a Cooperative Institute for Meteorological Satellite Studies at the University of Wisconsin (UW-CIMSS)-developed postprocessing algorithm to combine WDSS-II cloud object output. The final output of the system is used to fuse multiple meteorological datasets into a single cloud object framework. The object tracking system performance analysis shows improved object tracking performance with both increased temporal resolution of the geostationary data and increased cloud object size. The system output is demonstrated as an effective means for fusing a variety of meteorological data including raw satellite observations, satellite algorithm output, radar observations, and derived output, numerical weather prediction model output, and lightning detection data for studying the initial growth of deep convective clouds and temporal trends of such data.

Publisher

American Meteorological Society

Subject

Atmospheric Science,Ocean Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3