Evaluation of the Role of Dry and MQL Regimes on Machining and Sustainability Index of Strenx 900 Steel

Author:

Aslan Abdullah,Salur Emin,Kuntoğlu MustafaORCID

Abstract

Sustainable technologies draw attention in the machining industry thanks to their contributions in many aspects such as ecological, economic, and technological. Minimum quantity lubrication (MQL) is one of these techniques that enable to convey of the high pressurized cutting fluid toward the cutting zone as small oil particulates. This study examines the potency of MQL technology versus dry conditions on the machining quality during the milling of structural Strenx 900 steel within the sustainability index. High strength and toughness properties make this steel a hard-to-cut material providing an important opportunity to test the performances of dry and MQL environments. The outcomes of the experimental data demonstrated that MQL is superior in enhancing the quality of significant machining characteristics namely surface roughness (up to 35%), flank wear (up to 94%), wear mechanisms, cutting energy (up to 28%), and cutting temperatures (up to 14%). Furthermore, after analyzing the main headings of the sustainable indicators, MQL provided the same (+5) desirability value with a dry (+5) medium. This experimental work presents a comparative approach for improved machinability of industrially important materials by questioning the impact of sustainable methods.

Publisher

MDPI AG

Subject

Surfaces, Coatings and Films,Mechanical Engineering

Reference86 articles.

1. Srikanth, M., and Asmatulu, R. (2013). Nanotechnology Safety, Elsevier.

2. S960QL yapi çeliğinin işlenebilirliğinin sonlu elemanlar yöntemi ile incelenmesi;Avrupa Bilim Teknol. Derg.,2021

3. Fatigue and ultimate strength assessment of post weld treated strenx® 1100 plus butt welds;Procedia Struct. Integr.,2022

4. Enhancement of material removal rate in EDM process using silicon carbide based strenx 900 steel;Mater. Today Proc.,2021

5. Welding of S960MC with undermatching filler material;Weld. World,2018

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3