The Effect of Cellulose Nanocrystal-Based Nanofluid on Milling Performance: An Investigation of Dillimax 690T

Author:

Usca Üsame Ali1ORCID

Affiliation:

1. Department of Mechanical Engineering, Bingöl University, 12000 Bingöl, Türkiye

Abstract

Machining high-strength structural steels often requires challenging processes. It is essential to improve the machinability of such materials, which are frequently needed in industrial manufacturing areas. Recently, it has become necessary to enhance the machinability of such materials using different nanopowders. In this study, different cooling/lubricating (C/L) liquids were prepared with cellulose nanocrystal (CNC) nanopowder. The aim was to improve the machinability properties of Dillimax 690T material with the prepared CNC-based cutting fluids. CNC nanopowders were added to 0.5% distilled water by volume, and a new nanofluid was produced. Unlike previous studies, base synthetic oil and CNC-based cutting fluid were sprayed on the cutting area with a double minimum quantity lubrication (MQL) system. Machinability tests were carried out by milling. Two different cutting speeds (Vc = 120–150 m/min), two different feed rates (f = 0.05–0.075 mm/tooth), and four different C/L environments (dry, MQL oil, CNC nanofluid, MQL oil + CNC nanofluid) were used in the experiments. In the study, where a total of 16 experiments were performed, cutting temperature (Tc), surface roughness (Ra), tool wear (Vb), and energy consumption results were analyzed in detail. According to the test results, significant improvements were achieved in the machinability properties of the material in the experiments carried out using CNC nanofluid. In particular, the hybrid C/L environment using MQL oil + CNC nanofluid improved all machinability metrics by over 15% compared to dry machining. In short, using CNC nanopowders offers a good milling process of Dillimax 690T material with effective lubrication and cooling ability.

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3