Hard Milling Process Based on Compressed Cold Air-Cooling Using Vortex Tube for Sustainable and Smart Manufacturing

Author:

Celent Luka1ORCID,Bajić Dražen2,Jozić Sonja2ORCID,Mladineo Marko2ORCID

Affiliation:

1. Faculty of Technology, School of Mechanical and Design Engineering, University of Portsmouth, Portsmouth PO1 3DJ, UK

2. Faculty of Electrical Engineering, Mechanical Engineering and Naval Architecture, University of Split, FESB, R. Boskovica 32, 21000 Split, Croatia

Abstract

Improving machining performance and meeting the requirements of sustainable production at the same time represents a major challenge for the metalworking industry and scientific community. One approach to satisfying the above challenge is to apply different types of cutting fluids or to optimise their usage during the machining process. The fact that cutting fluids are well known as significant environmental pollutants in the metalworking industry has encouraged researchers to discover new environmentally friendly ways of cooling and lubricating in the machining process. Therefore, the main goal is to investigate the influence of different machining conditions on the efficiency of hard machining and find a sustainable solution towards smart manufacturing. In the experimental part of the work, the influence of various machining parameters and conditions on the efficiency of the process was investigated and measured through the surface roughness, tool wear and cutting force components. Statistical data processing was carried out, and predictive mathematical models were developed. An important achievement is the knowledge of the efficiency of compressed cold air cooling for hard milling with the resulting lowest average flank wear of 0.05 mm, average surface roughness of 0.28 µm, which corresponds to grinding procedure roughness classes of N4 and N5, and average tool durability increase of 26% compared to dry cutting and conventional use of cutting fluids. Becoming a smart machining system was assured via technological improvement achieved through the reliable prediction of tool wear obtained by radial basis neural networks modelling, with a relative prediction error of 3.97%.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Control and Optimization,Mechanical Engineering,Computer Science (miscellaneous),Control and Systems Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3