Abstract
In this work, self-lubricating composites containing MoS2 and graphite dispersed in an iron matrix were produced by powder metallurgy and sintering. Previous studies demonstrate that MoS2 reacts with iron matrixes during sintering, making the production of Fe-MoS2 composites rather difficult. Therefore, this study focused on a potential solution to avoid or reduce this reaction, whilst still providing good tribological properties. Our results show that the addition of graphite retards the reaction of MoS2 with iron and that the combination of MoS2 + graphite results in composites with an optimized coefficient of friction associated with a low wear rate both in nitrogen and air atmospheres. Through adequate control of the lubricant’s particle size, composition, and processing parameters, self-lubricating iron-based composites with a low dry coefficient of friction (0.07) and low wear rate (5 × 10−6 mm3·N−1·m−1) were achieved.
Funder
National Council for Scientific and Technological Development
Subject
Surfaces, Coatings and Films,Mechanical Engineering
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献