Bearing Non-Uniform Loading Condition Monitoring Based on Dual-Channel Fusion Improved DenseNet Network

Author:

Zhang Yanfei12,Liu Yang1,Wang Lijie1,Li Dongya2,Zhang Wenxue3,Kong Lingfei1

Affiliation:

1. School of Mechanical and Precision Instrument Engineering, Xi’an University of Technology, Xi’an 710048, China

2. Luoyang Bearing Science & Technology Co., Ltd., Luoyang 471039, China

3. Hangzhou Wren Hydraulic Equipment Manufacturing Co., Ltd., Hangzhou 311100, China

Abstract

Misalignment or unbalanced loading of machine tool spindle bearings often results in skewed bearing operation, which makes the spindle more susceptible to failure. In addition, due to the weak impact signal of the bearing in skewed operation, a single feature information cannot accurately characterize the operation status of the bearing. To address the above problems, this paper proposes a method to monitor the uneven running state of bearing load based on a dual-channel fusion improved dense connection (DenseNet) network. First, the original signal is pre-processed by overlapping sampling method, and the dual-channel experimental data are obtained by frequency-domain and time-frequency-domain algorithms; then the processed data are input into the improved 1D-DenseNet and 2D-DenseNet models respectively for feature extraction; then the frequency-domain and time-frequency-domain features are fused by concat splicing operation, and the output belongs to each category The probability distribution is used to characterize the operating state of the bearings. Finally, the validity of the algorithm model is verified by using the Case Western Reserve University public rolling bearing data set, and an experimental bench is designed and built for experimental verification of the uneven bearing load operation. The comparative analysis of the experimental results in this paper shows that the algorithm can extract the features of the input signal more comprehensively and finally achieve 100% recognition accuracy.

Funder

National Natural Science Foundation of China

Shaanxi Provincial Key R&D Program

Major Scientific and Technological Project of China machinery industry group Co.

Publisher

MDPI AG

Subject

Surfaces, Coatings and Films,Mechanical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3