Fault Diagnosis Method Research of Mechanical Equipment Based on Sensor Correlation Analysis and Deep Learning

Author:

Bai Tangbo12,Yang Jianwei12ORCID,Duan Lixiang3,Wang Yanxue12

Affiliation:

1. School of Mechanical-Electronic and Vehicle Engineering, Beijing University of Civil Engineering and Architecture, Beijing 100044, China

2. Beijing Key Laboratory of Performance Guarantee on Urban Rail Transit Vehicles, Beijing University of Civil Engineering and Architecture, Beijing 100044, China

3. College of Safety and Ocean Engineering, China University of Petroleum, Beijing 102249, China

Abstract

Large-scale mechanical equipment monitoring involves various kinds and quantities of information, and the present research on multisensor information fusion may face problems of information conflicts and modeling complexity. This paper proposes an analysis method combining correlation analysis and deep learning. According to the characteristics of monitoring data, three types of correlation coefficients between sensors in different states are obtained, and a new composite correlation analytical matrix is established to fuse the multisource heterogeneous data. The matrix represents fault feature information of different equipment states and helps further image generation. Meanwhile, a convolutional neural network-based deep learning method is developed to process the matrix and to discover the relationship between results and equipment states for fault diagnosis. To verify the method of this paper, experimental and field case studies are performed. The results show that it can accurately identify fault states and has higher diagnostic efficiency and accuracy than traditional methods.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Mechanical Engineering,Mechanics of Materials,Geotechnical Engineering and Engineering Geology,Condensed Matter Physics,Civil and Structural Engineering

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3