Fusion of Vibration and Current Signatures for the Fault Diagnosis of Induction Machines

Author:

Liu Meng-Kun12ORCID,Tran Minh-Quang1ORCID,Weng Peng-Yi1

Affiliation:

1. Department of Mechanical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan

2. Center for Cyber-Physical System Innovation, National Taiwan University of Science and Technology, Taipei 10607, Taiwan

Abstract

Induction machines are widely used in the industry as one of the major actuators, such as water pumps, air compressors, and fans. It is necessary to monitor and diagnose these induction motors to prevent any sudden shut downs caused by premature failures. Numerous fault detection and isolation techniques for the diagnosis of induction machines have been proposed over the past few decades. Among these techniques, motor current signature analysis (MCSA) and vibration analysis are two of the most common signal-based condition monitoring methods. They are often adopted independently, but each method has its strengths and weaknesses. This research proposed a systemic method to integrate the information received from the vibration and current measurements. We applied the wavelet packet decomposition to extract the time-frequency features of the vibration and current measurements and used the support vector machines as classifiers for the initial decision-making. The significant features were identified, and the performances of several classifiers were compared. As a result, the decision-level sensor fusion based on the Sugeno fuzzy integral was proposed to integrate the vibration and current information to improve the accuracy of the diagnosis.

Funder

Ministry of Education

Publisher

Hindawi Limited

Subject

Mechanical Engineering,Mechanics of Materials,Geotechnical Engineering and Engineering Geology,Condensed Matter Physics,Civil and Structural Engineering

Cited by 27 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3