Research on the Service Condition Monitoring Method of Rolling Bearings Based on Isomorphic Data Fusion

Author:

Zhang Yanfei12,Liu Yang1,Yang Mingqi2,Feng Xiaoyang3,Zhu Qianxiang4,Kong Lingfei1

Affiliation:

1. School of Mechanical and Precision Instrument Engineering, Xi’an University of Technology, Xi’an 710048, China

2. Luoyang Bearing Science & Technology Co., Ltd., Luoyang 471039, China

3. Shaanxi Robot Automation Technology Co., Ltd., Xi’an 710061, China

4. Xi’an Research Institute Co., Ltd., China Coal Technology and Engineering Group Corp, Xi’an 710048, China

Abstract

In order to solve the problem that it is difficult for a single sensor to accurately characterize the running state of rotating bearings under complex working conditions, this paper proposes a data-level fusion method based on multi-source isomorphic sensors to monitor spindle bearings. First, new vibration signals in the X,Y,Z direction were obtained through the process of decomposing, de-noise, and reconstructing. Second, the PCA algorithm was used to select the time-domain and frequency-domain features of the vibration signals, construct the feature matrix, and perform dimensionality reduction in the feature matrix. Finally, the entropy weight method was introduced to obtain the initial weights of the three directions as the inputs of the adaptive function. The chaotic particle swarm optimization algorithm proposed in this paper helps particles jump out of the local optimum. Chaotic mapping is used to initialize the velocity and position of the particles, which calculates globally optimal weights in three directions. In order to extract bearing signal features more accurately and efficiently, a DenseNet and Transformer (DAT) feature extraction model is proposed to deal with the complex changes and noise interference of bearing signals. Through the open data set of Jiangnan University and the data collected by our own experimental platform, the maximum accuracy of the DAT model was verified to be 100%.

Funder

National Natural Science Foundation of China

Shaanxi Provincial Key R&D Program

Science Foundation of The Tian Di Science & Technology Co., Ltd.

Publisher

MDPI AG

Subject

Surfaces, Coatings and Films,Mechanical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3