Abstract
In this study, hardfacing deposits using materials of different surface hardness are investigated using an innovative strategy for tribological testing. The abrasive wear behaviour of AISI 316L stainless steel is compared to the Cr–Ni–Mn alloy (OK Autrod 16.95) and the Cr-Mo alloy (Fluxofil 58), deposited on a substrate of S355JR steel. A modified three-body abrasion test and a modified scratch test were used to evaluate the tribological behaviour and wear mechanisms of these materials. The modified double-pass scratch test on the abraded surfaces is analysed using the geometrical parameters of grooves to aid in predicting the lifetime of machinery parts in abrasive working conditions. This leads to a shortening of the resistance to abrasion wear time of the evaluation of the abrasion wear resistance of materials. The validation of the results obtained in the double-pass scratch tests was carried out using three-body abrasion tests, according to the ASTM G65 standard. Wear mechanism investigations were carried out by scanning electron microscopy and three-dimensional surface topography and was analysed using an optical microscope. The results obtained from experimental research show that double-pass scratch tests demonstrated that it is possible to shorten the time needed to predict the abrasive behaviour of materials using this method.
Subject
Surfaces, Coatings and Films,Mechanical Engineering
Reference57 articles.
1. Friction and Wear of Materials;Rabinowicz,1965
2. Wear behaviour of some low alloyed steels under combined impact/abrasion contact conditions
3. Principles and Applications of Tribology;Bhushan,1999
4. A Review of the Abrasive Wear of Metals
5. Microstructure and Wear of Materials;Gahr,1987
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献