Low-Stress Abrasion of Novel Ni-P-Tribaloy Composite Coating

Author:

Mabrouk Ahmed1ORCID,Farhat Zoheir1,Islam Md. Aminul2ORCID

Affiliation:

1. Department of Mechanical Engineering, Dalhousie University, 1360 Barrington Street, Halifax, NS B3J 2X4, Canada

2. National Research Council Canada, 4250 Wesbrook Mall, Vancouver, BC V6T 1W5, Canada

Abstract

Degradation of industrial machinery through wear can be mitigated with the deposition of protective coatings to reduce maintenance costs and prolong their service lifespans. Electroless nickel-based composite coatings is one possible method used to provide this protection. The addition of Tribaloy (CoMoCrSi alloy) particles has been found to produce composite coatings with high toughness. In this work, electroless Ni-P-Tribaloy composite coatings were plated on AISI 1018 steel substrates and subjected to low-stress abrasion tests following ASTM G65 standards to investigate the abrasion of the coating. The test was performed at 10 revolution increments, with a 45 N applied load, until coating failure was observed and the measured abrasion was reported as volume loss. The two Ni-P-Tribaloy coating samples lasted for 90 and 100 revolutions, exhibiting a wear rate of 0.170 mm3 per revolution, compared to 0.135 mm3 per revolution for the Ni-P coatings. The abrasive wear mechanism in the Ni-P-Tribaloy coating was found to be plowing of the matrix around the Tribaloy particles, followed by the removal of the particles once they are protruding, which subsequently contributes to the three-body wear of the coating. The particle removal was accelerated at the coating particle-matrix interface. It is concluded that the size of the Tribaloy is a major factor, and we recommend that further studies be carried out using finer particles to improve the wear resistance of the Ni-P-Tribaloy coating.

Funder

Natural Sciences and Engineering Research Council of Canada

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3