Tightly Coupled LiDAR-Inertial Odometry and Mapping for Underground Environments

Author:

Chen Jianhong1,Wang Hongwei1,Yang Shan1ORCID

Affiliation:

1. School of Resources and Safety Engineering, Central South University, Changsha 410083, China

Abstract

The demand for autonomous exploration and mapping of underground environments has significantly increased in recent years. However, accurately localizing and mapping robots in subterranean settings presents notable challenges. This paper presents a tightly coupled LiDAR-Inertial odometry system that combines the NanoGICP point cloud registration method with IMU pre-integration using incremental smoothing and mapping. Specifically, a point cloud affected by dust particles is first filtered out and separated into ground and non-ground point clouds (for ground vehicles). To maintain accuracy in environments with spatial variations, an adaptive voxel filter is employed, which reduces computation time while preserving accuracy. The estimated motion derived from IMU pre-integration is utilized to correct point cloud distortion and provide an initial estimation for LiDAR odometry. Subsequently, a scan-to-map point cloud registration is executed using NanoGICP to obtain a more refined pose estimation. The resulting LiDAR odometry is then employed to estimate the bias of the IMU. We comprehensively evaluated our system on established subterranean datasets. These datasets were collected by two separate teams using different platforms during the DARPA Subterranean (SubT) Challenge. The experimental results demonstrate that our system achieved performance enhancements as high as 50–60% in terms of root mean square error (RMSE).

Funder

National Natural Science Foundation Project of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference34 articles.

1. Ebadi, K., Bernreiter, L., Biggie, H., Catt, G., Chang, Y., Chatterjee, A., Denniston, C.E., Deschênes, S.-P., Harlow, K., and Khattak, S. (2022). Present and Future of SLAM in Extreme Underground Environments. arXiv.

2. Underground Mine Positioning: A Review;Seguel;IEEE Sens. J.,2022

3. What localizes beneath: A metric multisensor localization and mapping system for autonomous underground mining vehicles;Jacobson;J. Field Robot.,2021

4. Ground robotics in tunnels: Keys and lessons learned after 10 years of research and experiments;Tardioli;J. Field Robot.,2019

5. ORB-SLAM2: An Open-Source SLAM System for Monocular, Stereo, and RGB-D Cameras;IEEE Trans. Robot.,2017

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3