Establishment of a Virus-Induced Gene-Silencing (VIGS) System in Tea Plant and Its Use in the Functional Analysis of CsTCS1

Author:

Li GuodongORCID,Li YanORCID,Yao Xinzhuan,Lu Litang

Abstract

Tea (Camellia sinensis [L.] O. Kuntze) is an important global economic crop and is considered to enhance health. However, the functions of many genes in tea plants are unknown. Virus-induced gene silencing (VIGS) mediated by tobacco rattle virus (TRV) is an effective tool for the analysis of gene functions, although this method has rarely been reported in tea plants. In this study, we established an effective VIGS-mediated gene knockout technology to understand the functional identification of large-scale genomic sequences in tea plants. The results showed that the VIGS system was verified by detecting the virus and using a real-time quantitative reverse transcription PCR (qRT-PCR) analysis. The reporter gene CsPOR1 (protochlorophyllide oxidoreductase) was silenced using the vacuum infiltration method, and typical photobleaching and albino symptoms were observed in newly sprouted leaves at the whole plant level of tea after infection for 12 d and 25 d. After optimization, the VIGS system was successfully used to silence the tea plant CsTCS1 (caffeine synthase) gene. The results showed that the relative caffeine content was reduced 6.26-fold compared with the control, and the level of expression of CsPOR1 decreased by approximately 3.12-fold in plants in which CsPOR1 was silenced. These results demonstrate that VIGS can be quickly and efficiently used to analyze the function of genes in tea plants. The successful establishment of VIGS could eliminate the need for tissue culture by providing an effective method to study gene function in tea plants and accelerate the process of functional genome research in tea.

Funder

Natural Science Foundation of China

Guizhou Province Outstanding Young Scientific and Technological Talent Cultivation Project

Guizhou Province Science and Technology Planning Project

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3