Development and application of the TRV-induced gene-silencing system in different Rhododendron species

Author:

Xu Yunyun1,Cui Yumeng1,Chen Hanyu1,Pu Ya1,Zhang Chunying2,Huang He1

Affiliation:

1. Beijing Forestry University

2. Shanghai Botanical Garden

Abstract

Abstract Rhododendron is one of the top ten traditional flowers in China, with high ornamental and medicinal values. However, molecular research on this species has been impeded by the lack of efficient molecular genetic techniques. Virus-induced gene silencing (VIGS) technology is an effective tool for analyzing gene functions, which has been successfully applied to many plant species. But there have been no reports of VIGS system for Rhododendron. In this study, tobacco rattle virus (TRV) was chosen to infect Rhododendron micranthum using phytoene desaturase (PDS) as the reporter gene. After the inoculation of pTRV2-RmPDS by leaf injection, photobleaching phenomena appeared in the newly developed leaves and the qRT-PCR assay demonstrated that RmPDS was successfully silenced. Then three parameters including the developmental stage, the Agrobacterium concentration and the inoculation temperature were examined to optimize the system. The silencing efficiency was increased from 2.4% to 11.4% and the optimized conditions were as follows: the developmental stage of the two true-leaf stage, the adjustment of the inoculation solution to a final OD600=1.5 and the inoculation temperature of 18 ℃. To further validate the system, the most optimal combination was used to infect other six rhododendron genotypes. R. mucronulatum, R. ovatum, R. × pulchrum, R. simsii and R. yedoense displayed the silenced phenotype of PDS as expected. We successfully established TRV-mediated VIGS technology in Rhododendron which could evaluate and characterize the function of plant genes without the need for cumbersome tissue culture.

Publisher

Research Square Platform LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3