Rapid Construction and Application of a Vector for Tobacco Ringspot Virus-Induced McPDS Silencing in Bitter Gourd

Author:

Zeng Lingen12,Zhang Hui23,Guo Jinju4,Deng Zhijun1ORCID,Liu Hongbiao2,Du Hu2,Zhong Yujuan2,Zhang Changyuan4,Yao Chunpeng2

Affiliation:

1. School of Forestry and Horticulture, Hubei Minzu University, Enshi 445000, China

2. Guangdong Key Laboratory for New Technology Research of Vegetables, Vegetable Research Institute of Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China

3. School of Life Sciences, South China Normal University, Guangzhou 510631, China

4. Institute of Facility Agriculture, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China

Abstract

The aim of this study is to facilitate the construction of virus-induced gene silencing vectors and to provide a reference or positive control for gene silencing in bitter gourd. A recombinant TRSV (tobacco ringspot virus) containing two components, pTRSV1 and pTRSV2, was used in this study. The fragment of the McPDS target was cloned into pTRSV2 via combined enzymic ligation during digestion. The TRSV components were agro-infiltrated into tobacco leaves to grow virus particles, which were then extracted and mechanically inoculated into the bitter gourd plants. The effect of TRSV-McPDS-mediated McPDS gene silencing was evaluated by observing the photo-bleaching phenotype, detecting the TRSV virus, and quantifying the downregulation of MCPDS gene expression and chlorophyll contents. The results showed that all bitter gourd plants infected with the empty TRSV or TRSV-McPDS virus grew and developed normally, with no visible signs of viral disease. However, after seven days of inoculation, only the bitter gourd plants that were inoculated with TRSV-McPDS showed obvious photobleaching in the leaves, stems, and buds. The TRSV-specific fragments were tested out in the systemically infected leaves of bitter gourd. The transcription level of the McPDS gene in the leaves dropped by 84.7%. The chlorophyll content also dropped significantly. These data suggest that the rapidly constructed VIGS vector TRSV-McPDS successfully induced McPDS silencing in bitter gourd. Taken together, the results of this study provide a practical method for vector construction in various VIGS applications, as well as a reference and a positive control for TRSV-induced gene silencing in bitter gourd.

Funder

Projects of Guangdong Provincial Department of Agriculture and Rural Affairs

Basic and Applied Basic Research Foundation of Guangzhou

Agricultural competitive industry discipline team building project of Guangdong Academy of Agricultural Sciences

Special Project of Vegetable Research Institute of Guangdong Academy of Agricultural Sciences

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3