E as in Enigma: The Mysterious Role of the Voltage-Dependent Anion Channel Glutamate E73

Author:

Rister Alexander Bernhard,Gudermann Thomas,Schredelseker JohannORCID

Abstract

The voltage-dependent anion channel (VDAC) is the main passageway for ions and metabolites over the outer mitochondrial membrane. It was associated with many physiological processes, including apoptosis and modulation of intracellular Ca2+ signaling. The protein is formed by a barrel of 19 beta-sheets with an N-terminal helix lining the inner pore. Despite its large diameter, the channel can change its selectivity for ions and metabolites based on its open state to regulate transport into and out of mitochondria. VDAC was shown to be regulated by a variety of cellular factors and molecular partners including proteins, lipids and ions. Although the physiological importance of many of these modulatory effects are well described, the binding sites for molecular partners are still largely unknown. The highly symmetrical and sleek structure of the channel makes predictions of functional moieties difficult. However, one residue repeatedly sticks out when reviewing VDAC literature. A glutamate at position 73 (E73) located on the outside of the channel facing the hydrophobic membrane environment was repeatedly proposed to be involved in channel regulation on multiple levels. Here, we review the distinct hypothesized roles of E73 and summarize the open questions around this mysterious residue.

Funder

Austrian Science Fund FWF

German research foundation DFG

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. VDAC as a Cellular Hub: Docking Molecules and Interactions;International Journal of Molecular Sciences;2023-04-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3