Coupling of ryanodine receptor 2 and voltage-dependent anion channel 2 is essential for Ca2+ transfer from the sarcoplasmic reticulum to the mitochondria in the heart

Author:

Min Choon Kee1,Yeom Dong Rim1,Lee Kyung-Eun2,Kwon Hye-Kyeong1,Kang Moonkyung3,Kim Yeon-Soo3,Park Zee Yong1,Jeon Hyesung2,Kim Do Han1

Affiliation:

1. School of Life Sciences and Systems Biology Research Centre, Gwangju Institute of Science and Technology, Gwangju 500-712, Korea

2. Biomedical Research Centre, Korea Institute of Science and Technology, Seoul 136-791, Korea

3. Indang Institute of Molecular Biology and Department of Smart Foods and Drugs, Inje University, Seoul 100-032, Korea

Abstract

The structural proximity and functional coupling between the SR (sarcoplasmic reticulum) and mitochondria have been suggested to occur in the heart. However, the molecular architecture involved in the SR–mitochondrial coupling remains unclear. In the present study, we performed various genetic and Ca2+-probing studies to resolve the proteins involved in the coupling process. By using the bacterial 2-hybrid, glutathione transferase pull-down, co-immunoprecipitation and immunocytochemistry assays, we found that RyR2 (ryanodine receptor type 2), which is physically associated with VDAC2 (voltage-dependent anion channel 2), was co-localized in SR–mitochondrial junctions. Furthermore, a fractionation study revealed that VDAC2 was co-localized with RyR2 only in the subsarcolemmal region. VDAC2 knockdown by targeted short hairpin RNA led to an increased diastolic [Ca2+] (calcium concentration) and abolishment of mitochondrial Ca2+ uptake. Collectively, the present study suggests that the coupling of VDAC2 with RyR2 is essential for Ca2+ transfer from the SR to mitochondria in the heart.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3