A Feasible Alternative to FDSOI and FinFET: Optimization of W/La2O3/Si Planar PMOS with 14 nm Gate-Length

Author:

Mah Siew KienORCID,Ker Pin JernORCID,Ahmad Ibrahim,Zainul Abidin Noor FaizahORCID,Ali Gamel Mansur Mohammed

Abstract

At the 90-nm node, the rate of transistor miniaturization slows down due to challenges in overcoming the increased leakage current (Ioff). The invention of high-k/metal gate technology at the 45-nm technology node was an enormous step forward in extending Moore’s Law. The need to satisfy performance requirements and to overcome the limitations of planar bulk transistor to scales below 22 nm led to the development of fully depleted silicon-on-insulator (FDSOI) and fin field-effect transistor (FinFET) technologies. The 28-nm wafer planar process is the most cost-effective, and scaling towards the sub-10 nm technology node involves the complex integration of new materials (Ge, III-V, graphene) and new device architectures. To date, planar transistors still command >50% of the transistor market and applications. This work aims to downscale a planar PMOS to a 14-nm gate length using La2O3 as the high-k dielectric material. The device was virtually fabricated and electrically characterized using SILVACO. Taguchi L9 and L27 were employed to study the process parameters’ variability and interaction effects to optimize the process parameters to achieve the required output. The results obtained from simulation using the SILVACO tool show good agreement with the nominal values of PMOS threshold voltage (Vth) of −0.289 V ± 12.7% and Ioff of less than 10−7 A/µm, as projected by the International Technology Roadmap for Semiconductors (ITRS). Careful control of SiO2 formation at the Si interface and rapid annealing processing are required to achieve La2O3 thermal stability at the target equivalent oxide thickness (EOT). The effects of process variations on Vth, Ion and Ioff were investigated. The improved voltage scaling resulting from the lower Vth value is associated with the increased Ioff due to the improved drain-induced barrier lowering as the gate length decreases. The performance of the 14-nm planar bulk PMOS is comparable to the performance of the FDSOI and FinFET technologies at the same gate length. The comparisons made with ITRS, the International Roadmap for Devices and Systems (IRDS), and the simulated and experimental data show good agreement and thus prove the validity of the developed model for PMOSs. Based on the results demonstrated, planar PMOSs could be a feasible alternative to FDSOI and FinFET in balancing the trade-off between performance and cost in the 14-nm process.

Funder

UNITEN Building Opportunities, Living Dreams (BOLD) Refresh Publication Fund 2021

Publisher

MDPI AG

Subject

General Materials Science

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3