A Double-Layer Vehicle Speed Prediction Based on BPNN-LSTM for Off-Road Vehicles

Author:

Liu Jichao1,Liang Yanyan1,Chen Zheng2,Li Huaiyi1,Zhang Weikang1,Sun Junling1

Affiliation:

1. Jiangsu XCMG Research Institute Co., Ltd., Xuzhou 221004, China

2. School of Materials and Physics, China University of Mining and Technology, Xuzhou 221116, China

Abstract

The accurate prediction of vehicle speed is crucial for the energy management of vehicles. The existing vehicle speed prediction (VSP) methods mainly focus on road vehicles and rarely on off-road vehicles. In this paper, a double-layer VSP method based on backpropagation neural network (BPNN) and long short-term memory (LSTM) for off-road vehicles is proposed. First of all, considering the motion characteristics of off-road vehicles, the VSP problem is established and the relationship between the variables in the problem is carefully analyzed. Then, the double-layer VSP framework is presented, which consists of speed prediction and information update layers. The speed prediction layer established by using LSTM is to predict vehicle speed in the horizon, and the information update layer built by BPNN is to update the prediction information. Finally, with the help of mining truck and loader operation scenarios, the proposed VSP method is compared with the analytical method, BPNN prediction method, and recurrent neural network (RNN) prediction method in terms of speed prediction accuracy. The results show that, under the premise of ensuring the real-time prediction performance, the average prediction error of the proposed BPNN-LSTM prediction method under two operation scenarios reduces by 48.14%, 35.82% and 30.09% compared with the other three methods, respectively. The proposed speed prediction method provides a new solution for predicting the speed of off-road vehicles, effectively improving the speed prediction accuracy.

Funder

Young Scientists Fund of the National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3