Abstract
The integrity monitoring algorithm based on pseudorange observations has been widely used outdoors and plays an important role in ensuring the reliability of positioning. However, pseudorange observations are greatly affected by the error sources such as multipath, clock drift, and noise in indoor pseudolite system, thus the pseudorange observations cannot be applied to high-precision indoor positioning. In general, double differenced (DD) carrier phase observations are used to obtain a high-precision indoor positioning result. What’s more, the carrier phase-based integrity monitoring (CRAIM) algorithm is applied to identify and exclude potential faults of the pseudolites. In this article, a holistic method is proposed to ensure the accuracy and reliability of positioning results. Firstly, if the reference pseudolite operates normally, extended Kalman filter is used for parameter estimation on the premise that the number of common pseudolites meets positioning requirements. Secondly, the innovation sequence in the Kalman filter is applied to construct test statistics and the corresponding threshold is determined from the Chi distribution with a given probability of false alert. The pseudolitehorizontal protection level (HPL) is calculated by the threshold and a prior probability of missed detection. Finally, compared the test statistics with the threshold to exclude the faultypseudolite for the reliability of positioning. The experiment results show that the proposed method improves the accuracy and stability of the results through faults detection and exclusion. This method ensures accuracies at the centimeter level for dynamic experiments and millimeter levels for static ones.
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献