LSOS: An FG Position Method Based on Group Phase Ranging Ambiguity Estimation of BeiDou Pseudolite

Author:

Zhang Heng123,Pan Shuguo1

Affiliation:

1. School of Instrument Science and Engineering, Southeast University, Nanjing 210096, China

2. State Key Laboratory of Satellite Navigation System and Equipment Technology, Shijiazhuang 050081, China

3. The 54th Research Institute of China Electronics Technology Group Corporation, Shijiazhuang 050081, China

Abstract

Due to the influence of indoor space environments, the carrier phase information obtained by the BeiDou pseudo-satellite often has the issue of cycle slips, which makes the user unable to carry out high-precision positioning. Aiming at the problem of ambiguity resolution (AR) and location in large-scale occluded space (LSOS), a factor graph (FG) position method based on group phase ranging ambiguity estimation of BeiDou pseudolite is proposed. Firstly, by introducing the principle of group phase period quantization and utilizing the multi-frequency characteristic of the BeiDou pseudo-satellite, the carrier phase propagation ambiguity of the BeiDou pseudo-satellite can be estimated quickly. On this basis, by introducing the shuffled frog leading algorithm (SFLA) assisted factor graph optimization location estimation method, the BeiDou pseudo-satellite positioning process in LSOS is realized. The experimental results show that the proposed method can solve the problem of fast estimation of ranging ambiguity of BeiDou pseudolite in LSOS, and the ranging accuracy can be improved to two wavelength ranges. In the further location experiment, it is found that the algorithm can not only guarantee the real-time location output but also improve the location precision to sub-meter level under the multi-frequency combination; the optimal location test precision is 9 cm, the maximum positioning error is 50 cm. This method successfully solves the problem wherein the BeiDou pseudo-satellite cannot provide real-time, continuous, and high-precision positioning in LSOS.

Funder

National Key Research and Development Plan of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3