Abstract
A boring bar is a tool used to install cutters and transfer power during boring. Because the boring bar in a narrow workspace is usually slender, chatter often occurs in the boring process. To improve the chatter stability of the boring bar, researchers have designed composite material boring bars with high dynamic stiffness to meet the requirements of high-speed boring. However, the effect of the shear deformation and rotational inertia were ignored. In this paper, a model of a composite boring bar considering shear deformation and rotational inertia is established based on the Adomian Modified Decomposition Method (AMDM). The dynamic characteristics, such as the vibration mode shapes, natural frequency, and chatter stability of the composite boring bar considering the shear deformation and rotational inertia, are analyzed comprehensively. The analysis results show that, when the shear deformation and rotational inertia are considered, the composite boring bar can exhibit different vibration mode shapes. Moreover, the natural frequencies and the cutting depth will be reduced. The results are helpful to improve the understanding about dynamic characteristics of the composite boring bar, and to provide guidance for designing of boring bars. Moreover, accurate adjustment of the cutting speed and depth in CNC boring can be based on the analysis results.
Funder
the National Science Foundation of China
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献