Affiliation:
1. College of Mechanical and Electronic Engineering, Shandong University of Science and Technology, Qingdao 266590, China
2. College of Computer Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China
Abstract
As metal boring bars have low dynamic stiffness, chatter is easily induced during the boring process. Therefore, improvement of the chatter stability is an open problem that requires further study. Though researchers proved that the composite materials suitable for making tapered boring bars can further improve the dynamic stiffness to meet the need of high-speed boring, existing research studies did not study the dynamic characteristics of the tapered composite boring bar comprehensively. In particular, no research has been done about the natural frequency and chatter stability of the composite boring bar under various taper ratios. Therefore, in this paper, a model of a tapered composite boring bar is established based on the Adomian modified decomposition method (AMDM). Second, this paper verifies the effectiveness of the AMDM by using the ANSYS software. Moreover, this paper studies the natural frequency of the boring bar model under various situations. Third, we verify the convergence of chatter stability of the boring bar model. Finally, the chatter stability of the tapered composite boring bar is analyzed comprehensively. The results show that the natural frequency and the chatter stability of the tapered model can be improved by choosing appropriate taper ratio, ply angle, stacking sequences, L/D ratio, T/D ratio, and the carbon composite. The results are helpful for the design of high-quality tapered composite boring bars matching the need of high speed cutting. In particular, these results can provide guidelines for adjusting the cutting speed in CNC boring and can further improve the surface finish of the machined workpieces.
Funder
National Natural Science Foundation of China
Subject
Mechanical Engineering,Mechanics of Materials,Geotechnical Engineering and Engineering Geology,Condensed Matter Physics,Civil and Structural Engineering
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献