Analysis of the Vibration and Chatter Stability of a Tapered Composite Boring Bar

Author:

Zhang Chunjin1ORCID,Ren Yongsheng1ORCID,Ji Shujuan2,Zhang Jinfeng1

Affiliation:

1. College of Mechanical and Electronic Engineering, Shandong University of Science and Technology, Qingdao 266590, China

2. College of Computer Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China

Abstract

As metal boring bars have low dynamic stiffness, chatter is easily induced during the boring process. Therefore, improvement of the chatter stability is an open problem that requires further study. Though researchers proved that the composite materials suitable for making tapered boring bars can further improve the dynamic stiffness to meet the need of high-speed boring, existing research studies did not study the dynamic characteristics of the tapered composite boring bar comprehensively. In particular, no research has been done about the natural frequency and chatter stability of the composite boring bar under various taper ratios. Therefore, in this paper, a model of a tapered composite boring bar is established based on the Adomian modified decomposition method (AMDM). Second, this paper verifies the effectiveness of the AMDM by using the ANSYS software. Moreover, this paper studies the natural frequency of the boring bar model under various situations. Third, we verify the convergence of chatter stability of the boring bar model. Finally, the chatter stability of the tapered composite boring bar is analyzed comprehensively. The results show that the natural frequency and the chatter stability of the tapered model can be improved by choosing appropriate taper ratio, ply angle, stacking sequences, L/D ratio, T/D ratio, and the carbon composite. The results are helpful for the design of high-quality tapered composite boring bars matching the need of high speed cutting. In particular, these results can provide guidelines for adjusting the cutting speed in CNC boring and can further improve the surface finish of the machined workpieces.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Mechanical Engineering,Mechanics of Materials,Geotechnical Engineering and Engineering Geology,Condensed Matter Physics,Civil and Structural Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3