Abstract
The structures and stability levels of leucine (Leu) and tyrosine (Tyr) adsorbed on a Cu(110) surface, at initial levels of coverage (less than 0.25 monolayer), were investigated using reflection–absorption infrared spectroscopy and high-resolution photoemission spectroscopy (HRPES), as well as by performing density functional theory calculations. At an initial coverage, the O–H dissociation bonded structure was indicated from the spectral results to be the most favorable structure for Leu adsorbed on the Cu(110) surface, whereas the O–H dissociated-N dative bonded structure was most favorable for adsorbed Tyr. These models were further supported by the results of experiments, in which the systems were exposed to other molecules and HRPES was used to monitor whether the amine or carboxylic groups of the adsorbed amino acids became reactive.
Funder
National Research Foundation of Korea
Korea Research Institute of Chemical Technology
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献