Affiliation:
1. Department of Chemical Engineering, Stanford University, Stanford, California 94305;,
Abstract
▪ Abstract With the rapidly changing materials needs of modern microelectronics, germanium provides an opportunity for future-generation devices. Controlling germanium interfaces will be essential for this purpose. We review germanium surface reactivity, beginning with a description of the most commonly used surfaces, Ge(100) and Ge(111). An analysis of oxide formation shows why the poor oxide properties have hindered practical use of germanium to date. This is followed by an examination of alternate means of surface passivation, with particular attention given to sulfide, chloride, and hydride termination. Specific tailoring of the interface properties is possible through organic functionalization. The few solution functionalization methods that have been studied are reviewed. Vacuum functionalization has been studied to a much greater extent, with dative bonding and cycloaddition reactions emerging as principle reaction mechanisms. These are reviewed through molecular reaction studies that demonstrate the versatility of the germanium surface.
Subject
Physical and Theoretical Chemistry
Cited by
209 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献