Author:
Li Mei,Zhang Erhu,Wang Yutong,Duan Jinghong,Jing Cuining
Abstract
Inverse halftoning is an ill-posed problem that refers to the problem of restoring continuous-tone images from their halftone versions. Although much progress has been achieved over the last decades, the restored images still suffer from detail loss and visual artifacts. Recent studies show that inverse halftoning methods based on deep learning are superior to other traditional methods, and thus this paper aimed to systematically review the inverse halftone methods based on deep learning, so as to provide a reference for the development of inverse halftoning. In this paper, we firstly proposed a classification method for inverse halftoning methods on the basis of the source of halftone images. Then, two types of inverse halftoning methods for digital halftone images and scanned halftone images were investigated in terms of network architecture, loss functions, and training strategies. Furthermore, we studied existing image quality evaluation including subjective and objective evaluation by experiments. The evaluation results demonstrated that methods based on multiple subnetworks and methods based on multi-stage strategies are superior to other methods. In addition, the perceptual loss and the gradient loss are helpful for improving the quality of restored images. Finally, we gave the future research directions by analyzing the shortcomings of existing inverse halftoning methods.
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献