A universal defect detection approach for various types of fabrics based on the Elo-rating algorithm of the integral image

Author:

Kang Xuejuan12,Zhang Erhu13ORCID

Affiliation:

1. School of Mechanical and Precision Instrument Engineering, Xi'an University of Technology, China

2. School of Electronic Engineering, Xi'an Aeronautical University, China

3. School of Printing, Packaging Engineering and Digital Media Technology, Xi'an University of Technology, China

Abstract

In order to overcome the shortcoming that a fabric defect detection method can only fit into a certain type of fabric, this paper presents a novel method by integrating the idea of the integral image into the Elo-rating algorithm (IIER), which can detect the defects of various types of fabric speedily. Firstly, the golden sub-blocks are extracted from defect-free images. The whole images are divided into many sub-blocks, and the integral images of these sub-blocks are obtained. Next, the R sub-blocks are randomly selected from these integral sub-blocks, and each block is assigned an initial Elo point. Afterwards, the R sub-blocks are matched against all sub-blocks and the Elo points are updated after each competition. Finally, regions with bright defects accumulate high Elo points and regions with dark defects accumulate low Elo points. Thus, the threshold value image can be obtained by thresholding the final Elo points, in which white, gray and black regions correspond to bright, dark-defect and defect-free regions, respectively. The performance of the proposed method is evaluated on databases of three categories of fabric, namely raw fabric, yarn-dyed fabric and patterned fabric. The experimental results show that the IIER is a universal algorithm, which has high detection rate for different types of fabrics; in particular, the average correct detection rate can reach 100% for dot-patterned fabric. In addition, the detection time can be significantly reduced comparing with the Elo-rating algorithm (ER). Particularly for star-patterned fabric, the average detection time per image is 24.18 seconds less than the ER.

Funder

automatic defect detection for web offsetting based on machine vsion

Heterogeneous feature structure fusion and modelling for human action recognition

Publisher

SAGE Publications

Subject

Polymers and Plastics,Chemical Engineering (miscellaneous)

Cited by 46 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3