An inverse halftoning method based on supervised deep convolutional neural network

Author:

Li Mei1ORCID,Liu Qi2

Affiliation:

1. Department of Mechanical and Electrical Engineering Yuncheng University Yuncheng China

2. Center of Innovation &Entrepreneurship for Undergraduates Yuncheng University Yuncheng China

Abstract

AbstractInverse halftoning is a technology that converts a binary image into a continuous tone image. Due to the wide application of inverse halftoning, many scholars have proposed several deep convolutional neural networks (DCNN) to optimize their performance. According to the observation, there is still room for improvement in content generation and detail recovery of the inverse halftone images generated by using the existing methods. Therefore, an inverse halftoning method based on supervised DCNN is proposed in this paper. The method consists of two parts: the multi‐level feature extraction model uses the down‐sampling to extract the features from the halftone image and remove the halftone noise dots on flat areas, which is implemented by four convolutional layers; the image reconstruction model uses up‐sampling to reconstruct image information, which is realized by four convolutional layers and two dense residual blocks. At the same time, in order to further recover the details, the down‐sampling feature maps and up‐sampling feature maps of the same size are concatenated by addition layers. Experimental results show that compared with other methods, the inverse halftone images obtained by the proposed network have better results in both subjective and objective evaluations.

Publisher

Institution of Engineering and Technology (IET)

Subject

Electrical and Electronic Engineering,Computer Vision and Pattern Recognition,Signal Processing,Software

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3