Abstract
Nowadays, wind energy is receiving considerable attention due to its availability, low cost, and environment-friendly operation. Wind turbines are rarely placed individually but rather in the form of a wind farm with a group of several wind turbines. The purpose of this research is to perform studies on wind turbine farms in order to find the best distribution for wind turbines that maximizes the produced power, hence minimizing the wind farm area. Wind Farm Area Optimization (WFAO) is performed for optimal placement of wind turbines using elitist teaching–learning-based optimization (ETLBO) techniques. Three different scenarios of wind (first is fixed wind direction and constant speed, second is variable wind direction and constant speed, and third is variable wind direction and variable speed) are considered to find the optimal number of turbines and turbine positioning in a minimized squared land area that maximizes the power production while minimizing the total cost. Other research carried out in the past was to find the optimal placement of the wind turbines in a fixed squared land area of 2 km×2 km. In the present study, WFAO–ETLBO algorithm has been implemented to get the optimal land area for the placement of the same number of turbines used in the past research. For Case 1, there is a significant reduction in land area by approximately 30.75%, 45.25%, and 51.75% for each wind scenario, respectively. For Case 2, the reductions in land area for three different wind scenarios are respectively 30.75%, 7.2%, and 7.2%. For Case 3, there is a reduction of 7.2% in land area for each wind scenario. It has been observed that the results obtained by the WFAO–ETLBO algorithm with a significant reduction in the land area along with optimal placement of wind turbines are better than the results obtained from the wind turbines placement in the fixed land area of 2 km×2 km.
Subject
Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献