Affiliation:
1. University of Tennessee at Chattanooga, Chattanooga, TN
Abstract
Optimizing the placement of the wind turbines in a wind farm to achieve optimal performance is an active area of research, with numerous research studies being published every year. Typically, the area available for the wind farm is divided into cells (a cell may/may not contain a wind turbine) and an optimization algorithm is used. In this study, the effect of the cell size on the optimal layout is being investigated by reducing it from five rotor diameter (previous studies) to 1/40 rotor diameter (present study).
A code is developed for optimizing the placement of wind turbines in large wind farms. The objective is to minimize the cost per unit power produced from the wind farm. A genetic algorithm is employed for the optimization. The velocity deficits in the wake of the wind turbines are estimated using a simple wake model. The code is verified using the results from the previous studies. Results are obtained for three different wind regimes: (1) Constant wind speed and fixed wind direction, (2) constant wind speed and variable wind direction, and (3) variable wind speed and variable wind direction. Cost per unit power is reduced by 11.7% for Case 1, 11.8% for Case 2, and 15.9% for Case 3 for results obtained in this study. The advantages/benefits of a refined grid spacing of 1/40 rotor diameter (1 m) are evident and are discussed.
To get an understanding of the sensitivity of the power produced to the wake model, optimized layout is obtained for the Case 1 using a different wake model.
Publisher
American Society of Mechanical Engineers
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献