Stochastic gradient descent for wind farm optimization
-
Published:2023-08-01
Issue:8
Volume:8
Page:1235-1250
-
ISSN:2366-7451
-
Container-title:Wind Energy Science
-
language:en
-
Short-container-title:Wind Energ. Sci.
Author:
Quick Julian, Rethore Pierre-ElouanORCID, Mølgaard Pedersen MadsORCID, Rodrigues Rafael ValottaORCID, Friis-Møller Mikkel
Abstract
Abstract. It is important to optimize wind turbine positions to mitigate potential wake losses. To perform this optimization, atmospheric conditions, such as the inflow speed and direction, are assigned probability distributions according to measured data, which are propagated through engineering wake models to estimate the annual energy production (AEP). This study presents stochastic gradient descent (SGD) for wind farm optimization, which is an approach that estimates the gradient of the AEP using Monte Carlo simulation, allowing for the consideration of an arbitrarily large number of atmospheric conditions. SGD is demonstrated using wind farms with square and circular boundaries, considering cases with 100, 144, 225, and 325 turbines, and the results are compared to a deterministic optimization approach. It is shown that SGD finds a larger optimal AEP in substantially less time than the deterministic counterpart as the number of wind turbines is increased.
Publisher
Copernicus GmbH
Subject
Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment
Reference73 articles.
1. Alibrahim, H. and Ludwig, S. A.: Hyperparameter Optimization: Comparing Genetic Algorithm against Grid Search and Bayesian Optimization, in: 2021 IEEE Congress on Evolutionary Computation (CEC), 28 June–1 July 2021, Kraków, Poland, 1551–1559, https://doi.org/10.1109/CEC45853.2021.9504761, 2021. a 2. Allen, J., King, R., and Barter, G.: Wind farm simulation and layout
optimization in complex terrain, J. Phys.: Conf. Ser., 1452, 012066, https://doi.org/10.1088/1742-6596/1452/1/012066, 2020. a, b 3. Annoni, J., Fleming, P., Scholbrock, A., Roadman, J., Dana, S., Adcock, C.,
Porte-Agel, F., Raach, S., Haizmann, F., and Schlipf, D.: Analysis of
control-oriented wake modeling tools using lidar field results, Wind Energ.
Sci., 3, 819–831, https://doi.org/10.5194/wes-3-819-2018, 2018. a 4. Baker, N. F., Stanley, A. P., Thomas, J. J., Ning, A., and Dykes, K.: Best
practices for wake model and optimization algorithm selection in wind farm
layout optimization, in: AIAA Scitech 2019 forum, 7–11 January 2019, San Diego, California, USA, p. 0540, https://doi.org/10.2514/6.2019-0540, 2019. a 5. Bastankhah, M. and Porté-Agel, F.: A new analytical model for wind-turbine wakes, Renew. Energy, 70, 116–123, https://doi.org/10.1016/j.renene.2014.01.002, 2014. a
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|