Author:
Li Yutao,Qin Yuanhan,Wang Hui,Xu Shaodong,Li Shenglin
Abstract
Pavement texture characteristics can reflect early performance decay, skid resistance, and other information. However, most statistical texture indicators cannot express this difference. This study adopts 3D image camera equipment to collect texture data from laboratory asphalt mixture specimens and actual pavement. A pre-processing method was carried out, including data standardisation, slope correction, missing value and outlier processing, and envelope processing. Then the texture data were calculated based on texture separation, texture power spectrum, grey level co-occurrence matrix, and fractal theory to acquire six leading texture indicators and eight extended indicators. The Pearson correlation coefficient was used to analyse the correlation of different texture indicators. The distinction vector based on the information entropy is calculated to analyse the distinction of the indicators. High correlations between ENE (energy) and ENT (entropy), ENT and D (Minkowski dimension) were found. The CON (contrast) has low correlations with HT (macro-texture power spectrum area), ENT and D. However, the differentiation of ENE and HT is more prominent, and the differentiation of the CON is smaller. ENE, ENT, CON and D indicators based on macro-texture and the corresponding original texture have strong linear correlations. However, the microtexture indicators are not linearly correlated with the corresponding original texture indicators. D, WT (micro-texture power spectrum area) and ENT exhibit high degrees of numerical concentration for the same road sections and may be more statistically helpful in distinguishing the characteristics of the pavement performance decay of the road sections.
Funder
National Natural Science Foundation of China
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献