Study of Texture Indicators Applied to Pavement Wear Analysis Based on 3D Image Technology

Author:

Li Yutao,Qin Yuanhan,Wang Hui,Xu Shaodong,Li Shenglin

Abstract

Pavement texture characteristics can reflect early performance decay, skid resistance, and other information. However, most statistical texture indicators cannot express this difference. This study adopts 3D image camera equipment to collect texture data from laboratory asphalt mixture specimens and actual pavement. A pre-processing method was carried out, including data standardisation, slope correction, missing value and outlier processing, and envelope processing. Then the texture data were calculated based on texture separation, texture power spectrum, grey level co-occurrence matrix, and fractal theory to acquire six leading texture indicators and eight extended indicators. The Pearson correlation coefficient was used to analyse the correlation of different texture indicators. The distinction vector based on the information entropy is calculated to analyse the distinction of the indicators. High correlations between ENE (energy) and ENT (entropy), ENT and D (Minkowski dimension) were found. The CON (contrast) has low correlations with HT (macro-texture power spectrum area), ENT and D. However, the differentiation of ENE and HT is more prominent, and the differentiation of the CON is smaller. ENE, ENT, CON and D indicators based on macro-texture and the corresponding original texture have strong linear correlations. However, the microtexture indicators are not linearly correlated with the corresponding original texture indicators. D, WT (micro-texture power spectrum area) and ENT exhibit high degrees of numerical concentration for the same road sections and may be more statistically helpful in distinguishing the characteristics of the pavement performance decay of the road sections.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3