Machine Learning Assessment of Damage Grade for Post-Earthquake Buildings: A Three-Stage Approach Directly Handling Categorical Features

Author:

Li Yutao1ORCID,Jia Chuanguo12ORCID,Chen Hong34,Su Hongchen1,Chen Jiahao1,Wang Duoduo1

Affiliation:

1. School of Civil Engineering, Chongqing University, Chongqing 400045, China

2. Key Laboratory of New Technology for Construction of Cities in Mountain Area (Chongqing University), Ministry of Education, Chongqing 400045, China

3. School of Computer Science and Engineering, Beihang University, Beijing 100191, China

4. State Key Lab of Software Development Environment, Beihang University, Beijing 100191, China

Abstract

The rapid assessment of post-earthquake building damage for rescue and reconstruction is a crucial strategy to reduce the enormous number of human casualties and economic losses caused by earthquakes. Conventional machine learning (ML) approaches for this problem usually employ one-hot encoding to cope with categorical features, and their overall procedure is neither sufficient nor comprehensive. Therefore, this study proposed a three-stage approach, which can directly handle categorical features and enhance the entire methodology of ML applications. In stage I, an integrated data preprocessing framework involving subjective–objective feature selection was proposed and performed on a dataset of buildings after the 2015 Gorkha earthquake. In stage II, four machine learning models, KNN, XGBoost, CatBoost, and LightGBM, were trained and tested on the dataset. The best model was judged by comprehensive metrics, including the proposed risk coefficient. In stage III, the feature importance, the relationships between the features and the model’s output, and the feature interaction effects were investigated by Shapley additive explanations. The results indicate that the LightGBM model has the best overall performance with the highest accuracy of 0.897, the lowest risk coefficient of 0.042, and the shortest training time of 12.68 s due to its relevant algorithms for directly tackling categorical features. As for its interpretability, the most important features are determined, and information on these features’ impacts and interactions is obtained to improve the reliability of and promote practical engineering applications for the ML models. The proposed three-stage approach can provide a reference for the overall ML implementation process on raw datasets for similar problems.

Funder

National Natural Science Foundation of China

Graduate Scientific Research and Innovation Foundation of Chongqing, China

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3