A Laboratory and Field Universal Estimation Method for Tire–Pavement Interaction Noise (TPIN) Based on 3D Image Technology

Author:

Wang HuiORCID,Zhang Xun,Jiang Shengchuan

Abstract

Tire–pavement interaction noise (TPIN) accounts mainly for traffic noise, a sensitive parameter affecting the eco-based maintenance decision outcome. Consistent methods or metrics for lab and field pavement texture evaluation are lacking. TPIN prediction based on pavement structural and material characteristics is not yet available. This paper used 3D point cloud data scanned from specimens and road pavement to conduct correlation and clustering analysis based on representative 3D texture metrics. We conducted an influence analysis to exclude macroscope pavement detection metrics and macro deformation metrics’ effects (international roughness index, IRI, and mean profile depth, MPD). The cluster analysis results verified the feasibility of texture metrics for evaluating lab and field pavement wear, differentiating the wear states. TPIN prediction accuracy based on texture indicators was high (R2 = 0.9958), implying that it is feasible to predict the TPIN level using 3D texture metrics. The effects of pavement texture changes on TPIN can be simulated by laboratory wear.

Funder

National Natural Science Foundation of China

Shanghai Science and Technology Development Funds

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3