Improved Model Predictive-Based Underwater Trajectory Tracking Control for the Biomimetic Spherical Robot under Constraints

Author:

Hou XihuanORCID,Guo Shuxiang,Shi LiweiORCID,Xing HuimingORCID,Yin He,Li Zan,Zhou Mugen,Xia Debin

Abstract

To improve the autonomy of the biomimetic sphere robot (BSR), an underwater trajectory tracking problem was studied. Considering the thrusters saturation of the BSR, an improved model predictive control (MPC) algorithm that features processing multiple constraints was designed. With the proposed algorithm, the kinematic and dynamic models of the BSR are combined in order to establish the predictive model, and a new state-space model is designed that is based on an increment of the control input. Furthermore, to avoid the infeasibility of the cost function in the MPC controller design, a new term with a slack variable is added to the objective function, which enables the constraints to be imposed as soft constraints. The simulation results illustrate that the BSR was able to track the desired trajectory accurately and stably while using the improved MPC algorithm. Furthermore, a comparison with the traditional MPC shows that the designed MPC-based increment of the control input is small. In addition, a comparative simulation using the backstepping method verifies the effectiveness of the proposed method. Unlike previous studies that only focused on the simulation validations, in this study a series of experiments were carried out that further demonstrate the effectiveness of the improved MPC for underwater trajectory tracking of the BSR. The experimental results illustrate that the improved MPC is able to drive the BSR to quickly track the reference trajectory. When compared with a traditional MPC and the backstepping method used in the experiment, the proposed MPC-based trajectory is closer to the reference trajectory.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Design and Implementation of a Model Predictive Formation Tracking Control System for Underwater Multiple Small Spherical Robots;Applied Sciences;2023-12-28

2. An Adaptive Control Method for Ship Path Tracking Accounting for Ship-Ship Hydrodynamic Interaction;2023 IEEE 11th International Conference on Computer Science and Network Technology (ICCSNT);2023-10-21

3. Evaluation of Detection System for Bioinspired Spherical Underwater Robots Based on the Pressure Sensor Array;2023 IEEE International Conference on Mechatronics and Automation (ICMA);2023-08-06

4. Path Planning for Amphibious Robots based on Multi-optimization Strategy A* Algorithm;2023 IEEE International Conference on Mechatronics and Automation (ICMA);2023-08-06

5. Performance evaluation of spherical underwater robot with attitude controller;Ocean Engineering;2023-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3