Redox Heterogeneity Entangles Soil and Climate Interactions

Author:

Wilmoth Jared L.

Abstract

Interactions between soils and climate impact wider environmental sustainability. Soil heterogeneity intricately regulates these interactions over short spatiotemporal scales and therefore needs to be more finely examined. This paper examines how redox heterogeneity at the level of minerals, microbial cells, organic matter, and the rhizosphere entangles biogeochemical cycles in soil with climate change. Redox heterogeneity is used to develop a conceptual framework that encompasses soil microsites (anaerobic and aerobic) and cryptic biogeochemical cycling, helping to explain poorly understood processes such as methanogenesis in oxygenated soils. This framework is further shown to disentangle global carbon (C) and nitrogen (N) pathways that include CO2, CH4, and N2O. Climate-driven redox perturbations are discussed using wetlands and tropical forests as model systems. Powerful analytical methods are proposed to be combined and used more extensively to study coupled abiotic and biotic reactions that are affected by redox heterogeneity. A core view is that emerging and future research will benefit substantially from developing multifaceted analyses of redox heterogeneity over short spatiotemporal scales in soil. Taking a leap in our understanding of soil and climate interactions and their evolving influence on environmental sustainability then depends on greater collaborative efforts to comprehensively investigate redox heterogeneity spanning the domain of microscopic soil interfaces.

Funder

University of Maryland

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3