Research advances in mechanisms of climate change impacts on soil organic carbon dynamics

Author:

Guo YadongORCID,Zeng ZhenzhongORCID,Wang JunjianORCID,Zou JunyuORCID,Shi ZhouORCID,Chen SongchaoORCID

Abstract

Abstract Soil, as the largest terrestrial carbon pool, has garnered significant attention concerning its response to global warming. However, accurately estimating the stocks and dynamics of soil organic carbon (SOC) remains challenging due to the complex and unclear influence mechanisms associated with biogeochemical processes in above- and belowground ecosystems, as well as technical limitations. Therefore, it is imperative to facilitate the integration of models and knowledge and promote dialogue between empiricists and modelers. This review provides a concise SOC turnover framework to understand the impact of climate change on SOC dynamics. It covers various factors such as warming, precipitation changes, elevated carbon dioxide, and nitrogen deposition. The review presents impact mechanisms from the perspective of organismal traits (plants, fauna, and microbes), their interactions, and abiotic regulation. Although valuable insights have been gained regarding SOC inputs, decomposition, and stabilization under climate change, there are still knowledge gaps that need to be addressed. In the future, it is essential to conduct systematic and refined research in this field. This includes standardizing the organismal traits most relevant to SOC, studying the standardization of SOC fractions and their resistance to decomposition, and focusing on the interactions and biochemical pathways of biological communities. Through further investigation of biotic and abiotic interactions, a clearer understanding can be attained regarding the physical protection, chemical stability, and biological driving mechanisms of SOC under climate change. This can be achieved by integrating multidisciplinary knowledge, utilizing novel technologies and methodologies, increasing in-situ experiments, and conducting long-term monitoring across multi-scales. By integrating reliable data and elucidating clear mechanisms, the accuracy of models can be enhanced, providing a scientific foundation for mitigating climate change.

Funder

the Professorial and Doctoral Scientific Research Foundation of Huizhou University

National Natural Science Foundation of China

the start-up fund provided by Southern University of Science and Technology

Publisher

IOP Publishing

Subject

Public Health, Environmental and Occupational Health,General Environmental Science,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3