Cascade Adaptive MPC with Type 2 Fuzzy System for Safety and Energy Management in Autonomous Vehicles: A Sustainable Approach for Future of Transportation

Author:

Phan Duong,Amani Ali Moradi,Mola Mirhamed,Rezaei Ahmad Asgharian,Fayyazi MojganORCID,Jalili Mahdi,Ba Pham DinhORCID,Langari Reza,Khayyam Hamid

Abstract

A sustainable circular economy involves designing and promoting new products with the least environmental impact through increasing efficiency. The emergence of autonomous vehicles (AVs) has been a revolution in the automobile industry and a breakthrough opportunity to create more sustainable transportation in the future. Autonomous vehicles are supposed to provide a safe, easy-to-use and environmentally friendly means of transport. To this end, improving AVs’ safety and energy efficiency by using advanced control and optimization algorithms has become an active research topic to deliver on new commitments: carbon reduction and responsible innovation. The focus of this study is to improve the energy consumption of an AV in a vehicle-following process while safe driving is satisfied. We propose a cascade control system in which an autonomous cruise controller (ACC) is integrated with an energy management system (EMS) to reduce energy consumption. An adaptive model predictive control (AMPC) is proposed as the ACC to control the acceleration of the ego vehicle (the following vehicle) in a vehicle-following scenario, such that it can safely follow the lead vehicle in the same lane on a highway. The proposed ACC appropriately switches between speed and distance control systems to follow the lead vehicle safely and precisely. The computed acceleration is then used in the EMS component to find the optimal engine torque that minimizes the fuel consumption of the ego vehicle. EMS is designed based on two methods: type 1 fuzzy logic system (T1FLS) and interval type 2 fuzzy logic system (IT2FLS). Results show that the combination of AMPC and IT2FLS significantly reduces fuel consumption while the ego vehicle follows the lead vehicle safely and with a minimum spacing error. The proposed controller facilitates smarter energy use in AVs and supports safer transportation.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3