Abstract
With the assistance of Pt-catalyzed formic acid vapor, robust Ag-Cu bonding was realized at an ultra-low temperature of 160 °C under 3 MPa for 30 min via the sintering of Ag nanoparticles in situ generated from Ag2O microparticles. The Cu oxide layer at the interface after bonding can be eliminated, which improves the bond strength and electrical conductivity of the joint. A metallic bond contact between the sintered Ag and the Cu substrate is obtained without interfacial solid solution and intermetallic phases, and the shear strength is comparable to previous bonding at a higher temperature. The bonding mechanisms were figured out by comparing the bonding with and without the Pt-catalyzed formic acid vapor. This ultra-low temperature Ag-Cu bonding method may create more flexibilities in the structure design and material selection for power device integration.
Funder
Chinese Academy of Sciences
Subject
General Materials Science,Metals and Alloys
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献