BERT-Based Transfer-Learning Approach for Nested Named-Entity Recognition Using Joint Labeling

Author:

Agrawal AnkitORCID,Tripathi SarsijORCID,Vardhan ManuORCID,Sihag VikasORCID,Choudhary GauravORCID,Dragoni NicolaORCID

Abstract

Named-entity recognition (NER) is one of the primary components in various natural language processing tasks such as relation extraction, information retrieval, question answering, etc. The majority of the research work deals with flat entities. However, it was observed that the entities were often embedded within other entities. Most of the current state-of-the-art models deal with the problem of embedded/nested entity recognition with very complex neural network architectures. In this research work, we proposed to solve the problem of nested named-entity recognition using the transfer-learning approach. For this purpose, different variants of fine-tuned, pretrained, BERT-based language models were used for the problem using the joint-labeling modeling technique. Two nested named-entity-recognition datasets, i.e., GENIA and GermEval 2014, were used for the experiment, with four and two levels of annotation, respectively. Also, the experiments were performed on the JNLPBA dataset, which has flat annotation. The performance of the above models was measured using F1-score metrics, commonly used as the standard metrics to evaluate the performance of named-entity-recognition models. In addition, the performance of the proposed approach was compared with the conditional random field and the Bi-LSTM-CRF model. It was found that the fine-tuned, pretrained, BERT-based models outperformed the other models significantly without requiring any external resources or feature extraction. The results of the proposed models were compared with various other existing approaches. The best-performing BERT-based model achieved F1-scores of 74.38, 85.29, and 80.68 for the GENIA, GermEval 2014, and JNLPBA datasets, respectively. It was found that the transfer learning (i.e., pretrained BERT models after fine-tuning) based approach for the nested named-entity-recognition task could perform well and is a more generalized approach in comparison to many of the existing approaches.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3