Semantic-enhanced graph neural network for named entity recognition in ancient Chinese books

Author:

Xu Yongrui,Mao Caixia,Wang Zhiyong,Jin Guonian,Zhong liangji,Qian Tao

Abstract

AbstractNamed entity recognition (NER) plays a crucial role in the extraction and utilization of knowledge of ancient Chinese books. However, the challenges of ancient Chinese NER not only originate from linguistic features such as the use of single characters and short sentences but are also exacerbated by the scarcity of training data. These factors together limit the capability of deep learning models, like BERT-CRF, in capturing the semantic representation of ancient Chinese characters. In this paper, we explore the semantic enhancement of NER in ancient Chinese books through the utilization of external knowledge. We propose a novel model based on Graph Neural Networks that integrates two different forms of external knowledge: dictionary-level and chapter-level information. Through the Graph Attention Mechanism (GAT), these external knowledge are effectively incorporated into the model’s input context. Our model is evaluated on the C_CLUE dataset, showing an improvement of 3.82% over the baseline BAC-CRF model. It also achieves the best score compared to several state-of-the-art dictionary-augmented models.

Funder

the Doctoral Fund of Hubei University of Science and Technology

the National Natural Science Foundation of China

the Social Science Foundation of Ministry of Education of China

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3