PNER: Applying the Pipeline Method to Resolve Nested Issues in Named Entity Recognition

Author:

Yang Hongjian1ORCID,Zhang Qinghao1,Kwon Hyuk-Chul1

Affiliation:

1. Center for Artificial Intelligence Research, Pusan National University, Busan 46241, Republic of Korea

Abstract

Named entity recognition (NER) in natural language processing encompasses three primary types: flat, nested, and discontinuous. While the flat type often garners attention from researchers, nested NER poses a significant challenge. Current approaches to addressing nested NER involve sequence labeling methods with merged label layers, cascaded models, and those rooted in reading comprehension. Among these, sequence labeling with merged label layers stands out for its simplicity and ease of implementation. Yet, highlighted issues persist within this method, prompting our aim to enhance its efficacy. In this study, we propose augmentations to the sequence labeling approach by employing a pipeline model bifurcated into sequence labeling and text classification tasks. Departing from annotating specific entity categories, we amalgamated types into main and sub-categories for a unified treatment. These categories were subsequently embedded as identifiers in the recognition text for the text categorization task. Our choice of resolution involved BERT+BiLSTM+CRF for sequence labeling and the BERT model for text classification. Experiments were conducted across three nested NER datasets: GENIA, CMeEE, and GermEval 2014, featuring annotations varying from four to two levels. Before model training, we conducted separate statistical analyses on nested entities within the medical dataset CMeEE and the everyday life dataset GermEval 2014. Our research unveiled a consistent dominance of a particular entity category within nested entities across both datasets. This observation suggests the potential utility of labeling primary and subsidiary entities for effective category recognition. Model performance was evaluated based on F1 scores, considering correct recognition only when both the complete entity name and category were identified. Results showcased substantial performance enhancement after our proposed modifications compared to the original method. Additionally, our improved model exhibited strong competitiveness against existing models. F1 scores on the GENIA, CMeEE, and GermEval 2014 datasets reached 79.21, 66.71, and 87.81, respectively. Our research highlights that, while preserving the original method’s simplicity and implementation ease, our enhanced model achieves heightened performance and competitive prowess compared to other methodologies.

Funder

Institute of Information & communications Technology Planning & Evaluation

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3