Microstructure Characterization and Mechanical Property of the GH4065A Superalloy Inertia Friction Welded Joints

Author:

Wang ZhaotianORCID,Huang Shuo,Zhang Wenyun,Zhang Beijiang,Ning YongquanORCID

Abstract

Structural characteristics and design requirements for the integration of the integral rotor and disc shaft of the engine, the welding quality, and mechanical properties of superalloy weldments have received more and more attention in recent years. Inertia friction welding (IFW) was carried out with the typical fiber structure of the solid solution GH4065A alloy as the research object, the microstructure evolution rules of the plastic deformation zone (PDMZ), the thermally affected zone (TMAZ), and the welding zone (WZ) were studied, and the formation mechanism of metallurgical joints was explored. The size difference of the γ′ phase at the grain boundary and in the fiber structure was revealed. The reason is that the γ′ phase located at the grain boundary has lower diffusion activation energy and higher diffusion rate. The microhardness and tensile properties of the IFW joints were explored, the study found that the microhardness of the TAMZ is the highest, followed by the PDMZ and the WZ. The tensile test results show that with the increase in temperature, the fracture position shifts from the BM to the WZ, the microstructure at the fracture changed significantly, and the yield strength decreased from 1372 to 1085 MPa.

Funder

National Natural Science Foundation of China

National Key Research and Development Program

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3