Microstructure and Mechanical Properties of Powder Metallurgy Superalloy Joints Welded by Inertia Friction Welding

Author:

Zhang Yongqiang123,Zhao Peng4,Tong Yiqi4,Dong Honggang4,Zhou Jun12,Qin Feng124,Bi Yanping15,Li Peng4

Affiliation:

1. Harbin Welding Institute Limited Company, Harbin 150028, China

2. Heilongjiang Advanced Friction Welding Technology and Equipment Key Laboratory, Harbin 150028, China

3. AECC Commercial Aircraft Engine Co., Ltd., Shanghai 200241, China

4. School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024, China

5. Harbin Well Welding Co., Ltd., Harbin 150060, China

Abstract

In recent years, for the structural characteristics and design requirements of the integral rotor and disc shaft of the integrated engine, the welding quality and mechanical properties of superalloy weldments have received increasing attention. In this paper, inertia friction welding (IFW) of FGH96 alloy was carried out using different welding parameters, and the homogeneous connection of FGH96 alloy hollow bars was successfully realized. The microstructure evolution, mechanical properties and fracture failure of the welded joints at room and high temperatures were investigated. The FGH96 alloy IFW joints were divided into the weld nugget zone (WNZ), the thermo-mechanically affected zone (TMAZ), the heat-affected zone (HAZ) and the base metal (BM), and there were significant differences in grain structure and distribution of the γ′ phase in each of the characteristic zones. The microhardness and tensile properties of the IFW joints were investigated, and the results showed an “M”-shaped curve in the microhardness distribution, with the lowest point of hardness observed in the HAZ. The tensile test results indicated that the fracture position moved from the BM to the WNZ with the increase in temperature, the microstructure at the fracture changed significantly and the tensile strength decreased from 1512.0 MPa at room temperature to 1201.3 MPa at 750 °C. The difference in the mechanical properties of the joints was mainly attributed to the changes in the dissolution and precipitation of the γ′ phase.

Funder

National Key Research and Development Program of China

Natural Science Foundation of Heilongjiang Province of China

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3