Effect of Semi-Aging Heat Treatment on Microstructure and Mechanical Properties of an Inertia Friction Welded Joint of FGH96 Powder Metallurgy Superalloy

Author:

Han Xiufeng12,Zhu Guoliang13,Tan Qingbiao13,Sun Baode13

Affiliation:

1. Shanghai Key Laboratory of Advanced High-Temperature Materials and Precision Forming, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China

2. AECC Commercial Aircraft Engine Co., Ltd., Shanghai 200241, China

3. State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China

Abstract

Inertia friction welded joints often present different microstructures than the base metal, and subsequent heat treatment processes are always needed to maintain superior performance. This study investigates the effect of semi-aging heat treatment after welding on the microstructure, residual stress, micro-hardness, and tensile properties of inertia friction welded FGH96 powder metallurgy superalloy using optical microscopy, scanning electron microscopy, X-ray diffraction, and hardness and tensile tests. The results show that the semi-aging heat treatment after welding does not affect the grain size or grain morphology of the base metal. However, the recrystallization process can be further promoted in the weld nugget zone and transition zone. Meanwhile, the grain size is refined and the residual stress is significantly reduced in the welded joint after the same heat treatment. Under the synergetic strengthening effect of the γ′ phase, semi-aging heat treatment increased the micro-hardness of the weld nugget zone from 470 HV to 530 HV and improved the average tensile strength at room temperature by 118 MPa. These findings provide a reference for the selection of the heat treatment process after inertia friction welding of nickel-based powder metallurgy superalloys.

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3